Coordinate Geometry (ನಿರ್ದೇಶಾಂಕ ರೇಖಾಗಣಿತ) - Formulas and Solved Questions:
Formulas, Model Questions, Solved Questions from the previous years' questions papers on Coordinate Geometry (ನಿರ್ದೇಶಾಂಕ ರೇಖಾಗಣಿತ) for the SSLC Kannada medium students have been updated in this post below. The students of SSLC can make use of this Online Study Package to get good scores in the SSLC examinations.
Teachers also can help the students to access this platform to use this Online Study Package anywhere and any time.
ನಿರ್ದೇಶಾಂಕ ರೇಖಾಗಣಿತ
ಮುಖ್ಯಾಂಶಗಳು
ಮೂಲಬಿಂದುವಿನ ನಿರ್ದೇಶಾಂಕ (0,0)
ದೂರ ಸೂತ್ರ
A(x1,y1) ಮತ್ತು B(x2,y2) ಬಿಂದುಗಳ ನಡುವಿನ ದೂರ ಕಂಡು ಹಿಡಿಯುವ ಸೂತ್ರ________________ | |
d = √ | (x₂-x₁)2 + (y₂-y₁)2 |
ದೂರ ಸೂತ್ರ
ಮೂಲಬಿಂದುವಿನಿಂದ P(x,y) ಬಿಂದುವಿಗೆ ಇರುವ ದೂರ √ (x2+ y2)à²ಾಗ ಪ್ರಮಾಣ ಸೂತ್ರ
A(x1,y1)ಮತ್ತು B(x2,y2) ಬಿಂದುಗಳನ್ನು ಆಂತರಿಕವಾಗಿ m1:m2 ಅನುಪಾತದಲ್ಲಿ ವಿà²ಾಗಿಸುವ ಬಿಂದು P(x,y) ನ ನಿರ್ದೇಶಾಂಕಗಳುP(x,y) = (
(m1x2+m2x1)
/
(m1+m2)
,
(m1y2+m2y1)
/
(m1+m2)
)
ಮಧ್ಯ ಬಿಂದು
A(x1,y1)ಮತ್ತು B(x2,y2) ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡದ ಮಧ್ಯಬಿಂದುವಿನ ನಿರ್ದೇಶಾಂಕಗಳುP(x,y) = (
(x2+x1)
/
2
,
(y2+y1)
/
2
)
ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ
(x1,y1), (x2,y2) ಮತ್ತು (x3,y3) ಬಿಂದುಗಳನ್ನು ಶೃಂಗಗಳಾಗಿ ಹೊಂದಿರುವ ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣA =
1
/
2
[x1(y2 - y3) + x2(y3 - y1) + x₃(y₁ - y₂)]
ಮಾದರಿ ಪ್ರಶ್ನೆಗಳು
ಉತ್ತರ:
P(x, y) = P(3, 4)
x = 3,
y = 4
P(x, y) = √ (x2+ y2)
P(3,4) = √ (32+ 42)
= √ (9+ 16)
= √ 25
= 5
P(x, y) = P(3, 4)
x = 3,
y = 4
P(x, y) = √ (x2+ y2)
P(3,4) = √ (32+ 42)
= √ (9+ 16)
= √ 25
= 5
ಉತ್ತರ:
P(x, y) = P(-6, -8)
x = -6
y = -8
P(x, y) = √ (x2+ y2)
P(-6,-8) = √ (-6)2+ (-8)2
= √ (36+ 64)
= √ 100
= 10
P(x, y) = P(-6, -8)
x = -6
y = -8
P(x, y) = √ (x2+ y2)
P(-6,-8) = √ (-6)2+ (-8)2
= √ (36+ 64)
= √ 100
= 10
ಉತ್ತರ:
P(x, y) = P(-8, 15)
x = 8
y = 15
P(x, y) = √ (x2+ y2)
P(-8,15) = √ (-8)2+ 152
= √ (64+ 225)
= √ 289
= 17
P(x, y) = P(-8, 15)
x = 8
y = 15
P(x, y) = √ (x2+ y2)
P(-8,15) = √ (-8)2+ 152
= √ (64+ 225)
= √ 289
= 17
ಉತ್ತರ:
(x1,y1) = (-5, 7)
(x2,y2) = (-1, 3)
AB = √ (x₂ - x₁)2+ (y₂ - y₁)2
AB = √ (-1)-(-5)2+ (3-7)2
AB = √ (-1)+52+ (-4)2
AB = √ 42+ (-4)2
AB = √ 16+ 16
AB = √ 32
AB = 2√ 2
(x1,y1) = (-5, 7)
(x2,y2) = (-1, 3)
AB = √ (x₂ - x₁)2+ (y₂ - y₁)2
AB = √ (-1)-(-5)2+ (3-7)2
AB = √ (-1)+52+ (-4)2
AB = √ 42+ (-4)2
AB = √ 16+ 16
AB = √ 32
AB = 2√ 2
ಉತ್ತರ:
(x1,y1) = (2, 3)
(x2,y2) = (6, 6)
PQ = √ (x₂ - x₁)2+ (y₂ - y₁)2
PQ = √ (6-2)2+ (6-3)2
PQ = √ 42+ 32
PQ = √ 16+ 9
PQ = √ 25
PQ = 5
(x1,y1) = (2, 3)
(x2,y2) = (6, 6)
PQ = √ (x₂ - x₁)2+ (y₂ - y₁)2
PQ = √ (6-2)2+ (6-3)2
PQ = √ 42+ 32
PQ = √ 16+ 9
PQ = √ 25
PQ = 5
ಉತ್ತರ:
(x1,y1) = (2, -2)
(x2,y2) = (14, 10)
PQ = √ (x₂ - x₁)2+ (y₂ - y₁)2
PQ = √ (14-2)2+ ((10-(-2))2
PQ = √ 122+ (10+2)2
PQ = √ 144+ 122
PQ = √ 144+ 144
PQ = √ 288
PQ = 12√ 2
(x1,y1) = (2, -2)
(x2,y2) = (14, 10)
PQ = √ (x₂ - x₁)2+ (y₂ - y₁)2
PQ = √ (14-2)2+ ((10-(-2))2
PQ = √ 122+ (10+2)2
PQ = √ 144+ 122
PQ = √ 144+ 144
PQ = √ 288
PQ = 12√ 2
ಉತ್ತರ:
(x1,y1) = (2, 4)
(x2,y2) = (3, 10)
P(x,y) = (
= (
= (
= (
(x1,y1) = (2, 4)
(x2,y2) = (3, 10)
P(x,y) = (
(x2+x1)
/
2
,
(y2+y1)
/
2
)= (
(2+3)
/
2
,
(4+10)
/
2
)= (
5
/
2
,
14
/
2
)
= (
5
/
2
, 7 )
ಉತ್ತರ:
(x1,y1) = (-3, 2)
(x2,y2) = (-1, -4)
P(x,y) = (
= (
= (
= (-2, -1 )
(x1,y1) = (-3, 2)
(x2,y2) = (-1, -4)
P(x,y) = (
(x2+x1)
/
2
,
(y2+y1)
/
2
)= (
(-1+(-3)
/
2
,
-4+2
/
2
)= (
-4
/
2
,
-2
/
2
)
= (-2, -1 )
ಉತ್ತರ:
(x1,y1) = (-3, 2)
(x2,y2) = (-1, -4)
m1:m2 = 3:1
P(x,y) = (
P(x,y) = (
P(x,y) = (
P(x,y) = (
P(x,y) = (7, 3)
(x1,y1) = (-3, 2)
(x2,y2) = (-1, -4)
m1:m2 = 3:1
P(x,y) = (
(m1x2+m2x1)
/
(m1+m2)
,
(m1y2+m2y1)
/
(m1+m2)
)P(x,y) = (
3(8)+1(4)
/
3+1
,
3(5)+1(-3)
/
3+1
) P(x,y) = (
24+4
/
4
,
15-3
/
4
) P(x,y) = (
28
/
4
,
12
/
4
) P(x,y) = (7, 3)
ಉತ್ತರ:
(x1,y1) = (-1, 7)
(x2,y2) = (4, -3)
m1:m2 = 2:3
P(x,y) = (
P(x,y) = (
P(x,y) = (
P(x,y) = (
P(x,y) = (1, 3)
(x1,y1) = (-1, 7)
(x2,y2) = (4, -3)
m1:m2 = 2:3
P(x,y) = (
(m1x2+m2x1)
/
(m1+m2)
,
(m1y2+m2y1)
/
(m1+m2)
)P(x,y) = (
2(4)+3(-1)
/
2+3
,
2(-3)+3(7)
/
2+3
) P(x,y) = (
8-3
/
5
,
-6+21
/
5
) P(x,y) = (
5
/
5
,
15
/
5
) P(x,y) = (1, 3)
ಉತ್ತರ:
(x1,y1) = (1, -1)
(x2,y2) = (-4, 6)
(x3,y3) = (-3, -5)
ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ:
A =
A =
A =
A =
A =
A =
A = 24
(x1,y1) = (1, -1)
(x2,y2) = (-4, 6)
(x3,y3) = (-3, -5)
ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ:
A =
1
/
2
[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)] A =
1
/
2
[1(6-(-5))+(-4)(-5-(-1))+(-3)(-1-6)] A =
1
/
2
[1(6+5)+(-4)(-5+1)+(-3)(-7)] A =
1
/
2
[1(11)+(-4)(-4)+21] A =
1
/
2
[11+16+21] A =
1
/
2
[48] A = 24
ಉತ್ತರ:
(x1,y1) = (2, 3)
(x2,y2) = (-1, 0)
(x3,y3) = (2, -4)
ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ:
A =
A =
A =
A =
A =
A =
A = 10.5
(x1,y1) = (2, 3)
(x2,y2) = (-1, 0)
(x3,y3) = (2, -4)
ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ:
A =
1
/
2
[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)] A =
1
/
2
[2(0-(-4))+(-1)(-4-3)+2(3-0)] A =
1
/
2
[2(0+4)+(-1)(-7)+2(3)] A =
1
/
2
[2(4)+7+6] A =
1
/
2
[8+7+6] A =
1
/
2
[21] A = 10.5
ಅà²್ಯಾಸ ಲೆಕ್ಕಗಳು
(5, 12) ಬಿಂದುವು ಮೂಲ ಬಿಂದುವಿನಿಂದ ಇರುವ ದೂರ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 13
ಉತ್ತರ: 13
ಮೂಲ ಬಿಂದುವಿನಿಂದ (p, q) ಬಿಂದುವಿಗೆ ಇರುವ ದೂರ ಕಂಡುಹಿಡಿಯಿರಿ. (ಮಾರ್ಚ್/ಎಪ್ರಿಲ್ 2018)
ಉತ್ತರ: √(p2+q2)
ಉತ್ತರ: √(p2+q2)
(2, 8) ಮತ್ತು (6, 8) ಬಿಂದುಗಳ ನಡುವಿನ ದೂರ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 4
ಉತ್ತರ: 4
(3, 1) ಮತ್ತು (0, x) ಬಿಂದುಗಳ ನಡುವಿನ ದೂರ 5 ಮಾನಗಳಾದರೆ x ನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ. (ಜೂನ್ 2019)
ಉತ್ತರ: 5
ಉತ್ತರ: 5
A(8, 3) ಮತ್ತು B(2, 11) ಬಿಂದುಗಳ ನಡುವಿನ ದೂರ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 10
ಉತ್ತರ: 10
(2, -3) ಮತ್ತು (k, 9) ಬಿಂದುಗಳ ನಡುವಿನ ದೂರ 13 ಮಾನಗಳಾದರೆ k ನ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ. (ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ 2019)
ಉತ್ತರ: 7
ಉತ್ತರ: 7
(-2, 1), (4, 6) ಮತ್ತು(6, -3) ನಿರ್ದೇಶಾಂಕಗಳು ತ್ರಿà²ುಜದ ಶೃಂಗಗಳಾಗಿವೆ.ಈ ತ್ರಿà²ುಜದ ಸುತ್ತಳತೆ ಕಂಡುಹಿಡಿಯಿರಿ. (ಮಾರ್ಚ್ 2017)
ಉತ್ತರ: √61+√85+√80
ಉತ್ತರ: √61+√85+√80
(5, -2),(6, 4) ಮತ್ತು (7, -2) ಬಿಂದುಗಳು ಸಮದ್ವಿಬಾಹು ತ್ರಿà²ುಜದ ಶೃಂಗಗಳೇ? ಪರೀಕ್ಷಿಸಿ. (ಮಾದರಿ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆ 2019)
ಉತ್ತರ: ಹೌದು
ಉತ್ತರ: ಹೌದು
(-3, 5)ಮತ್ತು (4, -9) ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡವನ್ನು 1:2 ಅನುಪಾತದಲ್ಲಿ ವಿà²ಾಗಿಸುವ ಬಿಂದುವಿನ ನಿರ್ದೇಶಾಂಕಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. (ಜೂನ್/ಜುಲೈ 2020)
ಉತ್ತರ: (
ಉತ್ತರ: (
-2
/
3
,
1
/
3
)
(1,6)ಮತ್ತು (4,3) ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ರೇಖಾಖಂಡವನ್ನು 1:6 ಅನುಪಾತದಲ್ಲಿ ವಿà²ಾಗಿಸುವ ಬಿಂದುವಿನ ನಿರ್ದೇಶಾಂಕಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: (
ಉತ್ತರ: (
10
/
7
,
39
/
7
)
A(5,2), B(4,7) ಮತ್ತು C(7,-4) ಬಿಂದುಗಳಿಂದಾದ ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 2
ಉತ್ತರ: 2
(1,-1), (-4,6) ಮತ್ತು C(-3,-5) ಶೃಂಗಗಳನ್ನು ಹೊಂದಿರುವ ತ್ರಿà²ುಜದ ವಿಸ್ತೀರ್ಣ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 24
ಉತ್ತರ: 24
A(0,5), B(6,11) ಮತ್ತು C(10,7) ಬಿಂದುಗಳು ∆ ABC ಯ ಶೃಂಗಗಳಾಗಿದ್ದು, D ಮತ್ತು E ಗಳು ಕ್ರಮವಾಗಿ AB ಮತ್ತು AC ಬಾಹುಗಳ ಮಧ್ಯಬಿಂದುಗಳು. ಆದರೆ ∆ADE ವಿಸ್ತೀರ್ಣ ಕಂಡುಹಿಡಿಯಿರಿ.
ಉತ್ತರ: 6
ಉತ್ತರ: 6
A(1,1), B(3,2) ಮತ್ತು C(5,3) ಈ ಬಿಂದುಗಳು ∆ ABC ಯ ಶೃಂಗಗಳಾಗಿರಲು ಸಾಧ್ಯವಿಲ್ಲ ಎಂದು ಸಮರ್ಥಿಸಿ. (ಜೂನ್/ಜುಲೈ 2020)
A(8,-4), B(9,5) C(0,4) ಈ ಬಿಂದುಗಳು ತ್ರಿà²ುಜದ ಶೃಂಗಗಳಾಗಿವೆ. ಅದು ಸಮದ್ವಿಬಾಹು ತ್ರಿà²ುಜವಾಗಿದೆ ಎಂದು ತೋರಿಸಿ. (ಸಪ್ಟೆಂಬರ್ 2020)